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THE MOTION OF A POINT MASS ALONG A STRINGT

A. P. BLINOV

Moscow
(Received 23 March 2000)

As a supplement to results obtained earlier {1], the general integral of motion of a point mass along a string is determined, and
the influence of friction is evaluated. © 2001 Elsevier Science Ltd. All rights reserved.

The problem of the motion of a point mass along a string was considered in [1] as an example of a mechanical
system for which Zhukovskii’s method [2] can be used to determine the particular integral of motion.

1. THE GENERAL INTEGRAL OF MOTION

We will consider, as previously [1], the plane motion of a point mass (a bead) along an elastic weightless thread (a
string) stretched between two fixed points. In the plane of motion we will fix a stationary system of coordinates Oxy
so that the points where the string is fastened lie symmetrically on the x axis at a distance / from the origin of coordinates.

Let r; and r, be the distances from the bead to the right-hand and left-hand fastening points, respectively, let g
be the coefficient of tensile stiffness of the string, and let A be the preliminary tension of the string. Then, the
potential energy of the string, V;, is given by the formula

V=%g[(r, rry+A-2D)2 - A2 (L1

Here the misprint in [1] has been corrected.)
This problem is similar to the well-known problem of two fixed centres [3].
However, to separate the variables, the introduction of new time is also required.
After the introduction of the dimensionless coordinates
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the potefitial energy, the kinetic energy, and the Hamilton-Jacobi equation will respectively take the form

V= %g[(Zlq, +A-2D%-A7)
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where A is the energy constant.
To separate the variables, we will introduce a new time according to the formula

d!=1’q,2 -q%d‘t (1.2)

This replacement is one-to-one only when g; = 1 and |g;| = 1 (at the points where the string is fastened).
The Hamilton—Jacobi equation becomes
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Assuming W = W (q,) + W2x(q,), we obtain the system of equations
aw, ) W
(q,z—l)[a—‘) =-hai +hay +h -, (1- ‘12)[ 2] =q
¢]] 992

where ¢ is an arbitrary constant (¢, > 0). We will write its solution

’1 +hag -lqt .
w=] 3—%‘_l—'ﬂ-dq,+‘/c-,arcsmq2

and the solution for the generalized coordinates and momenta
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where C; and C, are arbitrary constants, or in expanded form

q3 = sm,}[cT( t;:; —C] )] (13)
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When investigating the motions of a point close to the x axis, the quantity u® = g, - 1is close to zero (the product
gA is large). Therefore, with some error, it is possible to simplify the elliptic integral
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and to write an approximate solution for g, in explicit form
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2. THE STRENGTH OF THE STRING
An important characteristic of the system, from the viewpoint of strength, is the maximum tension of the string r;
+ r, — 24, an estimate of which can be obtained from an estimate of the range of possible motion
gl(n +ry 20+ A)? = A*)< 2k
For maximum tension, it is also possible to provide an estimate in the case of a sudden deceleration of a point
on the string
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where E is the modulus of elasticity of the string, related to its unit cross-section area and ag is the abscissa of a
heavy point fixed on the string in the rest position. An expression for the potential energy V can be obtained, for
example, by moving a heavy point fixed on the string from the rest point to the point (x, 0) along the x axis, and
then moving it parallel to the y axis to the point (x, y) at which the deceleration occurred.

3. THE INFLUENCE OF DRY FRICTION ON THE MOTION
OF A POINT

For applications, it may also be of interest to take into account dry friction during the motion of a point along the
string.
The tension forces of the string

Q=a—v=g(21q. -20+4)
g

acting on a heavy point along the directions r; and r, create an equivalent force directed along the bisector of the
angle o between the directions r; and r:
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which generates a friction force pF, where u is the coefficient of dry friction. The latter largely prevents any change
in the coordinate g, (during motions close to the x axis, i.e. when gA is large).
We will write the Lagrange equation for this system
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Regarding u as a small parameter on sections where ¢, is of constant sign, and taking into account the presence
of a complete integral of the generating system, according to perturbation theory it is possible to find a solution
for the perturbed system by differentiation operations and by taking quadratures. Here, very lengths expressions
arise, and it is more convenient to use the method of successive approximations.

Making a replacement of variables, which is used on changing to Hamilton’s equations, we transform system
(3.1) to the form
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where p, and p, are generalized momenta.
Suppose that, close to the right-hand support, a velocity impulse vwas imparted to the heavy point in a direction
similar to the direction on the left-hand support, i.e.

q=l+g, gy =-1+€,, ¢, =€;, g, =v when =0

where €, €, and €3 are small quantities and £, > 0 and &, > 0. It will also be necessary to determine the time ¢*
before the point stops (g5(1*) = 0) and the coordinate ¢,(t*) if it turns out that t* < #,, where #; is the time of
motion of the point up to the specified neighbourhood of the left-hand support when there is no friction. In this
case, the factor sign ¢, in system (3.2) will be replaced by unity.

Taking as the zero approximation the generating solution g9, 20, P10 and pyg, for a first approximation we obtain
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Using the fact that the explicit form of g,y and ¢ as a function of t is known, and taking into account relation
(1.2), we obtain

I
p3 =21 (agio~bWafp -1dt (33)
0
In the second approximation
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From relations (3.2) it can be seen that ¢, < py — p3. If the equation p3 = py in relation to ¢ has a positive
solution, smaller than ¢, it will approximately represent the quantity #*.

The expression for p; after integration is fairly lengths. Therefore, for p; we will make an upper estimate. Since
q1 < g1, Where qy, = 21,/I2 + 1 is the amplitude value of the solution G0, it follows that

i
P < zu(aqla —b) qlza -t n t* Eu[zu(aqla -b) qlza _]] .
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