THE MOTION OF A POINT MASS ALONG A STRING \dagger

A. P. BLINOV

Moscow
(Received 23 March 2000)
As a supplement to results obtained earlier [1], the general integral of motion of a point mass along a string is determined, and the influence of friction is evaluated. © 2001 Elsevier Science Ltd. All rights reserved.

The problem of the motion of a point mass along a string was considered in [1] as an example of a mechanical system for which Zhukovskii's method [2] can be used to determine the particular integral of motion.

1. THE GENERAL INTEGRAL OF MOTION

We will consider, as previously [1], the plane motion of a point mass (a bead) along an elastic weightless thread (a string) stretched between two fixed points. In the plane of motion we will fix a stationary system of coordinates Oxy so that the points where the string is fastened lie symmetrically on the x axis at a distance l from the origin of coordinates.

Let r_{1} and r_{2} be the distances from the bead to the right-hand and left-hand fastening points, respectively, let g be the coefficient of tensile stiffness of the string, and let Δ be the preliminary tension of the string. Then, the potential energy of the string, V, is given by the formula

$$
\begin{equation*}
V=\frac{1}{2} g\left[\left(r_{1}+r_{2}+\Delta-2 l\right)^{2}-\Delta^{2}\right] \tag{1.1}
\end{equation*}
$$

Here the misprint in [1] has been corrected.)
This problem is similar to the well-known problem of two fixed centres [3].
However, to separate the variables, the introduction of new time is also required.
After the introduction of the dimensionless coordinates

$$
q_{1}=\frac{r_{1}+r_{2}}{2 l}, \quad q_{2}=\frac{r_{1}-r_{2}}{2 l}\left(-1 \leqslant q_{2} \leqslant 1 \leqslant q_{1} \leqslant \infty\right)
$$

the potential energy, the kinetic energy, and the Hamilton-Jacobi equation will respectively take the form

$$
\begin{aligned}
& V=\frac{1}{2} g\left[\left(2 l q_{1}+\Delta-2 l\right)^{2}-\Delta^{2}\right] \\
& T=\frac{1}{2} l^{2} m\left(q_{1}^{2}-q_{2}^{2}\right)\left(\frac{\dot{q}_{1}^{2}}{q_{1}^{2}-1}+\frac{\dot{q}_{2}^{2}}{1-q_{2}^{2}}\right) \\
& \left(q_{1}^{2}-1\right)\left(\frac{\partial W}{\partial q_{1}}\right)^{2}+\left(1-q_{2}^{2}\right)\left(\frac{\partial W}{\partial q_{2}}\right)^{2}=2 l^{2} m(h-V)\left(q_{1}^{2}-q_{2}^{2}\right)
\end{aligned}
$$

where h is the energy constant.
To separate the variables, we will introduce a new time according to the formula

$$
\begin{equation*}
d t=\sqrt{q_{1}^{2}-q_{2}^{2}} d \tau \tag{1.2}
\end{equation*}
$$

This replacement is one-to-one only when $q_{1}=1$ and $\left|q_{2}\right|=1$ (at the points where the string is fastened).
The Hamilton-Jacobi equation becomes

$$
\begin{aligned}
& \left(q_{1}^{2}-1\right)\left(\frac{\partial W}{\partial q_{1}}\right)^{2}+\left(1-q_{2}^{2}\right)\left(\frac{\partial W}{\partial q_{2}}\right)^{2}=-l_{1} q_{1}^{2}+l_{2} q_{1}+l_{3} \\
& l_{1}=4 g m l^{4}, l_{2}=4 m g l^{3}(2 l-\Delta), l_{3}=2 m l^{2}(h-2 g l(l-\Delta))
\end{aligned}
$$

\dagger Prikl. Mat. Mekh. Vol. 65, No. 1, pp. 169-172, 2001.

Assuming $W=W_{1}\left(q_{1}\right)+W_{2}\left(q_{2}\right)$, we obtain the system of equations

$$
\left(q_{1}^{2}-1\right)\left(\frac{\partial W_{1}}{\partial q_{1}}\right)^{2}=-l_{1} q_{1}^{2}+l_{2} q_{1}+l_{3}-c_{1},\left(1-q_{2}^{2}\right)\left(\frac{\partial W_{2}}{\partial q_{2}}\right)^{2}=c_{1}
$$

where c_{1} is an arbitrary constant ($c_{1}>0$). We will write its solution

$$
W=\int \sqrt{\frac{l_{3}+l_{2} q_{1}-l_{1} q_{1}^{2}}{q_{1}^{2}-1}} d q_{1}+\sqrt{c_{1}} \arcsin q_{2}
$$

and the solution for the generalized coordinates and momenta

$$
\frac{\partial W}{\partial c_{1}}=C_{1}, \frac{\partial W}{\partial h}=\tau-C_{2}, \frac{\partial W}{\partial q_{1}}=p_{1}, \frac{\partial W}{\partial q_{2}}=p_{2}
$$

where C_{1} and C_{2} are arbitrary constants, or in expanded form

$$
\begin{align*}
& q_{2}=\sin \left[\sqrt{\left.c_{1}\left(\frac{\tau+C_{2}}{l^{2} m}-C_{1}\right)\right]}\right. \tag{1.3}\\
& \frac{d q_{2}}{d \tau}=\frac{\sqrt{c_{1}} \sqrt{1-q_{2}^{2}}}{l^{2} m}, t=\int_{0}^{\tau} \sqrt{q_{1}^{2}(\tau)-q_{2}^{2}(\tau)} d \tau \\
& I \equiv \int\left[\left(q_{1}^{2}-1\right)\left(l_{3}+l_{2} q_{1}-l_{1} q_{1}^{2}\right)\right]^{-1 / 2} d q_{1}=\frac{\tau+C_{2}}{l^{2} m} \\
& \frac{d q_{1}}{d \tau}=\sqrt{\frac{\left(q_{1}^{2}-1\right)\left(l_{3}+l_{2} q_{1}-l_{1} q_{1}^{2}\right)}{l^{2} m}}
\end{align*}
$$

When investigating the motions of a point close to the x axis, the quantity $u^{2}=q_{1}-1$ is close to zero (the product $q \Delta$ is large). Therefore, with some error, it is possible to simplify the elliptic integral

$$
\begin{aligned}
& I=2 \int\left[\left(2+u^{2}\right)\left(l_{4}-\frac{l_{1}}{l} \Delta u^{2}-l_{1} u^{4}\right)\right]^{-1 / 2} d u \approx \\
& \approx \int\left(2 l_{4}-l_{5}^{2} u^{2}\right)^{-1 / 2} d u=\frac{1}{l_{5}} \arcsin \frac{l_{5} u}{\sqrt{2 l_{4}}} \\
& l_{4}=2 l^{2} m h-c_{1}, l_{5}^{2}=8 l^{3} m g \Delta-2 l^{2} m h+c_{1}
\end{aligned}
$$

and to write an approximate solution for q_{1} in explicit form

$$
q_{1}=\frac{2 l_{4}}{l_{5}^{2}} \sin ^{2} \frac{l_{5}\left(\tau+C_{2}\right)}{2 l^{2} m}+1
$$

2. THE STRENGTH OF THE STRING

An important characteristic of the system, from the viewpoint of strength, is the maximum tension of the string r_{1} $+r_{2}-2 l$, an estimate of which can be obtained from an estimate of the range of possible motion

$$
g\left[\left(r_{1}+r_{2}-2 l+\Delta\right)^{2}-\Delta^{2}\right]<2 h
$$

For maximum tension, it is also possible to provide an estimate in the case of a sudden deceleration of a point on the string

$$
v_{0}=\frac{2 E l^{2}\left(x-a_{0}\right)^{2}+y^{2}}{\left(l_{2}-a_{0}^{2}\right)(2 l-\Delta)}+E\left[2 l-\left(r_{1}+r_{2}\right)\right]<h
$$

where E is the modulus of elasticity of the string, related to its unit cross-section area and a_{0} is the abscissa of a heavy point fixed on the string in the rest position. An expression for the potential energy V_{0} can be obtained, for example, by moving a heavy point fixed on the string from the rest point to the point $(x, 0)$ along the x axis, and then moving it parallel to the y axis to the point (x, y) at which the deceleration occurred.

3. THE INFLUENCE OF DRY FRICTION ON THE MOTION OF A POINT

For applications, it may also be of interest to takc into account dry friction during the motion of a point along the string.

The tension forces of the string

$$
Q=\frac{\partial V}{\partial q_{1}}=g\left(2 l q_{1}-2 l+\Delta\right)
$$

acting on a heavy point along the directions r_{1} and r_{2} create an equivalent force directed along the bisector of the angle α between the directions r_{1} and r_{2} :

$$
F=2 Q \cos \frac{\alpha}{2}=4 g l\left(2 l q_{1}-2 l+\Delta\right) \sqrt{\frac{q_{1}^{2}-1}{q_{1}^{2}-q_{2}^{2}}}
$$

which generates a friction force μF, where μ is the coefficient of dry friction. The latter largely prevents any change in the coordinate q_{2} (during motions close to the x axis, i.e. when $q \Delta$ is large).

We will write the Lagrange equation for this system

$$
\begin{align*}
& \frac{q_{1}^{2}-q_{2}^{2}}{q_{1}^{2}-1} \ddot{q}_{1}+\frac{q_{2}^{2}-1}{\left(q_{1}^{2}-1\right)^{2}} q_{1} \dot{q}_{1}^{2}-\frac{2 q_{2}}{q_{1}^{2}-1} \dot{q}_{1} \dot{q}_{2}+a q_{1}-b=0 \tag{3.1}\\
& \frac{q_{1}^{2}-q_{2}^{2}}{1-q_{1}^{2}} \ddot{q}_{2}+\frac{q_{1}^{2}-1}{\left(1-q_{2}^{2}\right)^{2}} q_{2} \dot{q}_{2}^{2}-\frac{2 q_{1}}{1-q_{2}^{2}} \dot{q}_{1} \dot{q}_{2}=-2 \mu\left(a q_{1}-b\right) \sqrt{\frac{q_{1}^{2}-1}{q_{1}^{2}-q_{2}^{2}}} \operatorname{sign} \dot{q}_{2} \\
& a=\frac{4 g}{m}, b=\frac{2 g(2 l-\Delta)}{l m}(a>b>0)
\end{align*}
$$

Regarding μ as a small parameter on sections where \dot{q}_{2} is of constant sign, and taking into account the presence of a complete integral of the generating system, according to perturbation theory it is possible to find a solution for the perturbed system by differentiation operations and by taking quadratures. Here, very lengths expressions arise, and it is more convenient to use the method of successive approximations.

Making a replacement of variables, which is used on changing to Hamilton's equations, we transform system (3.1) to the form

$$
\begin{align*}
& \dot{q}_{1}=\frac{\left(q_{1}^{2}-1\right) p_{1}}{q_{1}^{2}-q_{2}^{2}}, \dot{q}_{2}=\frac{\left(1-q_{2}^{2}\right) p_{2}}{q_{1}^{2}-q_{2}^{2}}, p_{1}=-\frac{\left(1-q_{2}^{2}\right) q_{1} p_{1}^{2}}{\left(q_{1}^{2}-q_{2}^{2}\right)^{2}}-a q_{1}+b \tag{3.2}\\
& \dot{p}_{2}=\frac{\left(q_{1}^{2}-1\right) q_{2} p_{2}^{2}}{q_{1}^{2}-q_{2}^{2}}-2 \mu\left(a q_{1}-b\right) \sqrt{\frac{q_{1}^{2}-1}{q_{1}^{2}-q_{2}^{2}}} \operatorname{sign} \dot{q}_{2}
\end{align*}
$$

where p_{1} and p_{2} are generalized momenta.
Suppose that, close to the right-hand support, a velocity impulse v was imparted to the heavy point in a direction similar to the direction on the left-hand support, i.e.

$$
q_{1}=1+\varepsilon_{1}, q_{2}=-1+\varepsilon_{2}, \dot{q}_{1}=\varepsilon_{3}, \dot{q}_{2}=v \text { when } t=0
$$

where $\varepsilon_{1}, \varepsilon_{2}$ and ε_{3} are small quantities and $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$. It will also be necessary to determine the time t^{*} before the point stops $\left(\dot{q}_{2}\left(t^{*}\right)=0\right)$ and the coordinate $q_{2}\left(t^{*}\right)$ if it turns out that $t^{*}<t_{1}$, where t_{1} is the time of motion of the point up to the specified neighbourhood of the left-hand support when there is no friction. In this case, the factor sign \dot{q}_{2} in system (3.2) will be replaced by unity.

Taking as the zero approximation the generating solution q_{10}, q_{20}, p_{10} and p_{20}, for a first approximation we obtain

$$
\begin{aligned}
& q_{11}=q_{10}, q_{21}=q_{20}, p_{11}=p_{10}, \quad p_{21}=p_{20}-p_{3} \\
& p_{3}=2 \mu \int_{0}^{t}\left(a q_{10}-b\right) \sqrt{\frac{q_{10}^{2}-1}{q_{10}^{2}-q_{20}^{2}}} d t
\end{aligned}
$$

Using the fact that the explicit form of q_{10} and q_{20} as a function of τ is known, and taking into account relation (1.2), we obtain

$$
\begin{equation*}
p_{3}=2 \mu \int_{0}^{1}\left(a q_{10}-b\right) \sqrt{q_{10}^{2}-1} d t \tag{3.3}
\end{equation*}
$$

In the second approximation

$$
q_{22}=\int_{0}^{1} \frac{1-q_{20}^{2}}{q_{10}^{2}-q_{20}^{2}} p_{21} d t
$$

From relations (3.2) it can be seen that $\dot{q}_{22}<p_{20}-p_{3}$. If the equation $p_{3}=p_{20}$ in relation to t has a positive solution, smaller than t_{1}, it will approximately represent the quantity t^{*}.

The expression for p_{3} after integration is fairly lengths. Therefore, for p_{3} we will make an upper estimate. Since $q_{1} \leqslant q_{1 a}$, where $q_{1 a}=2 l_{4} / l_{5}^{2}+1$ is the amplitude value of the solution q_{10}, it follows that

$$
p_{3}<2 \mu\left(a q_{1 a}-b\right) \sqrt{q_{1 a}^{2}-1 t} \text { и } t^{*} \cong v\left[2 \mu\left(a q_{1 a}-b\right) \sqrt{q_{1 a}^{2}-1}\right]^{-1}
$$

REFERENCES

1. BLINOV, A. P., A special case of the motion of a point mass. Prikl. Mat. Mekh. 1999, 63, 5, 781-784.
2. ZHUKOVSKII, N. Ye., Complete Collected Papers. Vol. 1. General Mechanics. Ob'edin. Nauch.-Tekh. Izd., NKTP SSSR, Moscow, 1937.
3. DUBOSHIN, G. N., Celestial Mechanics. Analytical and Qualitative Methods. Nauka, Moscow, 1964.
